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Light scattering regimes along the optical axis in turbid media
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We inject an angularly collimated laser beam into a scattering medium of a nondairy creamer-water solution

and examine the distribution of the scattered light along the optical axis as a function of the source-detector
spacing. The experimental and simulated data obtained from a Monte Carlo simulation suggest four regimes
characterizing the transition from unscattered to diffusive light. We compare the data also with theoretical
predictions based on a first-order scattering theory for regions close to the source, and with diffusionlike
theories for larger source-detector spacings. We demonstrate the impact of the measurement process and the
effect of the unavoidable absorption of photons by the detection fiber on the light distribution inside the
medium. We show that the range of validity of these theories can depend on the experimental parameters such
as the diameter and acceptance angle of the detection fiber.
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I. INTRODUCTION

The propagation of particles and radiation in highly scat-
tering media has been studied extensively for several decades
[1-3]. Direct applications can be found in areas of science
and technology including, e.g., reactor physics, meteorology,
astrophysics, oceanography, diffusive light imaging, and
quality control in manufacturing [4-6]. In the past few years,
this research has witnessed the progress reported in bio-
optical imaging using lasers in the near infrared region, for
which the medium’s absorption is negligible compared to its
scattering strength. The goal in the latter studies is to use the
scattered light to reconstruct the optical parameters that char-
acterize the medium.

There are three main types of approaches to examine the
scattering properties of diffusive media using laser fields.
The first two types measure the light outside the medium.
These include reflectance measurements and transmission
studies of samples with a finite size [7]. These are ideal
measurements as the detection process itself has no impact
on the light distribution inside the medium. Here a theoreti-
cal description of the observed data does not require the in-
clusion of the absorption due to the measurement. The third
type of approach involves the observation of the light inside
the medium where the data can be obtained as a function of
the position of the optical detection fiber [8,9]. In this case
the measurement could be destructive to the scattered light
thus requiring the details of the measurement process to be
included in the prediction of the data.

To the best of our knowledge, nearly all light scattering
experiments were performed in the nondestructive measure-
ment regime. In many cases, the studies have used isotropic
sources located deep inside the medium to generate a spheri-
cally symmetrical illumination. This approach has three main
advantages. First, the theoretical modeling based on the dif-
fusion approximation provides simple and fully analytical
solutions even for pulsed or intensity modulated light and,
second, the theoretically difficult to describe few-scattering
events that dominate the light distribution close to the source
are not so important making the diffusion theory valid for
shorter distances [10,11]. Third, only a minor fraction of the
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isotropically ejected light is removed by the detection fiber.

In other situations of angularly collimated beams, the
source-detector (s-d) spacing was chosen so large that light
was already highly diffusive and the loss due to the detected
photons relative to the available photons in that region was
very small. In this large-distance region in which most ex-
perimental light-scattering studies were carried out, good
agreement was found with diffusionlike theories. However,
in this regime the scattering data depend only on the reduced
scattering coefficient which makes a recovery of the full set
of scattering parameters problematic [10,11].

In this work, we examine theoretically and also experi-
mentally scattered light from an angularly collimated source
and study its distribution along the optical axis covering the
entire range from the ballistic (beamlike) regime to the dif-
fusion regime. This on-axis region is important as it is the
location where light is brightest and therefore most promis-
ing for imaging. In contrast to measurements either outside
the medium or off-axis and inside the medium, the on-axis
detection of light inside the medium can be difficult to model
theoretically. For example, there are no known analytical ex-
pressions that describe the transition region between ballistic
and diffusion, and the very process of detecting photons from
the beam can have a direct impact on the light distribution.
In other words, depending on the s-d spacing the measure-
ment could change from ideal (no impact on the distribution)
to destructive. In general, theories to predict the data in de-
structive measurements are nontrivial to come by as the local
effect of a perfect absorber (the detector) has to be taken into
account.

We should point out that in the on-axis domain the realm
of validity of the theories with regard to the s-d spacing can
depend on how the light is detected by the fiber. For instance,
we will show below that the larger the numerical aperture
and diameter of the detection fiber, the shorter the s-d spac-
ing at which the diffusion theory becomes valid. On the other
hand, large numerical apertures and fiber diameters limit the
applicability region of few-scattering theories to only small
s-d spacings.

The interaction of light with turbid media has been inten-
sively studied and the present theoretical and experimental
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work relies in several aspects on previous studies [3]. For
example, some works have explored the transition between
the various scattering regimes depending on the source-
detector spacings. The principal theoretical problem here is
to find a unified theory that can satisfactorily describe all
four intensity regions. As a recent example, You and collabo-
rators [12] have explored the possibility of using a modified
scattering phase function to better match the transition from
the ballistic and transport to the diffusive regimes. In this
study the 8-P; approximation [13,14] permitted a better ac-
curacy for small source detector spacings than the usual dif-
fusion theory. Other studies have focused on the modification
of the intensity behavior for very small detector source spac-
ings [15-20] and showed that the light depends on the details
of the collection fiber. In none of these works, however, was
the effect of the absorption of the fiber with regard to the
measured intensity taken into account.

We also note that most experiments used larger concen-
trations of scattering agents [21,22] which does not allow a
clean separation between the various scattering regimes to be
measured. For example, the several studies based on in-
tralipid with various concentrations focused on the diffusive
regime that is characterized by inverse scattering lengths that
are often smaller than 1 mm. As a result the exponential-
falloff regime as well as the entry region discussed in this
work could not be resolved spatially as the main focus was
more on the diffusive regime. Even though many experi-
ments scanned an optical fiber through a tank with a highly
scattering medium, we are not aware of experimental data
that use systematic measurements of the transverse beam
profile to determine the light distribution along the optical
axis for relatively dilute media.

The paper is organized as follows. In Sec. II we introduce
the four distinct spatial regimes with regard to the s-d spac-
ing. A detection of on-axis light requires a discussion about
the potential impact of the measurement on the light distri-
bution. Based on a Monte Carlo simulation to the Boltzmann
equation we show under which conditions on-axis measure-
ments are nondestructive. In Sec. III we discuss a few-
scattering theory and establish its range of validity for the
first two intensity regimes. In Sec. IV we study the validity
of diffusive theories. In Sec. V we show how the four re-
gimes can be used together to reconstruct the scattering co-
efficients for our experimental data. We illustrate this by ana-
lyzing our experimental scattering data obtained for a diluted
solution of nondairy creamer in water. We conclude with a
brief discussion and outlook.

II. FOUR SPATIAL REGIMES OF INTENSITY

In the absence of coherent wave effects [23,24], the
steady state distribution for laser light in a highly scattering
medium can be described by the Boltzmann (radiative trans-
fer or transport) equation [2] for the irradiance I(r,€) as a

function of the position r and the propagation direction
(with Q%=1):
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Q- VI(I',Q) == (Iu“s + Iu‘a)I(r’Q)
+,uSJdﬂ’p(Q,Q’)I(r,Q’)+S(r,Q),

(2.1)

where u (u,) is the scattering (absorption) coefficient. The
incoming light can be either modeled via an appropriate
boundary condition or by a source term S(r, ). The condi-
tional probability that an incoming photon with (normalized)
velocity €' is scattered into the € direction is denoted by
the scattering phase function p(€2-€Q') which we model here
by the Henyey-Greenstein phase function, fi(Q-Q')=(1
—g2)H{4m(1+g>-2gQ-Q')*?}, where the anisotropy param-
eter g is the average cosine of the scattering angle g
=(Q-Q'). We assume that the medium has a length W and
that the (narrow) laser beam is injected into the medium at
r=(0,0,0) along the z direction, S(r,€Q)=8(r)5(Q2—-e,). In
our theoretical analysis we also assume for simplicity that
the medium is index matched such that there are no surface-
induced reflections associated with the interfaces at z=0 and
z=W.

In this work we locate the detection fiber along the optical
beam axis at r=(0,0,z). It is characterized by a circular
surface area of radius pp and a maximum acceptance cone
(field of view) with half angle ay, that is directly related to
the fiber’s numerical aperture and the index of refraction of
the medium. Except for the more general derivation in Sec.
III, we assume that the orientation of this fiber, nj, is parallel
to the optical axis, np=e,.

As solutions that describe the intensity distribution
I(r,Q) for a wide range of parameters are very difficult to
obtain analytically, we have performed large scale Monte
Carlo simulations [25-32] to the Boltzmann equation based
on up to 10 photons that were injected at r=0 into the
medium. Due to the independence of each random path, par-
allel computations could be performed on Xgrid, a distrib-
uted computing architecture for a cluster of 27 Macintoshs
with cycle rates of 0.7 to 2.7 GHz. Each photon performed a
random walk [32] with a random distance s distributed ac-
cording to P(s)=pu, exp(—u,s) and with a random scattering
angle according to fug(2-€’). Due to the required large
number of photons and scattering events the usual random
number generators based on the linear congruence method
with a period of 2 X 10° was not appropriate [31]. We found
better and less correlated quasirandom numbers using the
Kirkpatrick-Stoll r250 algorithm [33] that is based on a fast
shift register generator and has a period of more than 1074,

Photons that passed through a circular disk of radius pp
centered at r=(0,0,z) were counted if their incoming angle
with the detector’s normal nj direction was less than the
angle aj. To account for absorption (used in Sec. V), each
photon was weighted according to the factor exp(—u,L),
where L denotes the total length of each photon path. From
now on (except in Sec. V), we will take advantage of the
scaling property of the Boltzmann equation and use ,u,;1 as
the unit of length.

Let us now discuss how the intensity falls off along the
optical axis as a function of the detection parameters. In Fig.
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FIG. 1. Transmitted light intensity detected at circular area with
radius pp, and field of view «ap, as a function of the width of the slab
W. The detector is located at the exist surface (x=0, y=0, and
z=W). (N=10% injected photons; u,=1; u,=0; g=0.9.)

1 we display the detected light intensity as a function of the
distance to the detector z which we chose here to be at the
exit surface of the medium of length W with u,=1, u,=0,
and g=0.9. In each of the four simulations, we have injected
N=10% photons into the entry surface of the medium and
counted the photons that passed through the detector. The
four curves correspond to pp=0.1 and 0.5 and a,p=10° and
90° to represent various fibers with different numerical aper-
tures. Due to the choice z=W each photon can pass the de-
tection area only once.

We observe four distinct regimes. The first regime (I) for
very short distances (for our detection parameters z<<2) is
characterized essentially by light that did not have the oppor-
tunity to scatter very often. For a wide field of view of the
detector (close to 90°) the intensity decay curve starts with a
vanishing slope. Note that in this thin slab regime the de-
tected transmission depends very sensitively on the param-
eters of the fiber. One could also expect [34] that this regime
also depends most sensitively on the choice of the scattering
phase function. It is important to note that in contrast to the
Beer-Lambert law [15-20], this regime is not exponential
and its initial slope depends quite sensitively on g, pp, and
ap.
The next and potentially most interesting regime (IT) (2
< z<10) is characterized by a nearly exponential decay that,
in the case of the smallest detector (pp=0.1 and a;,=10°),
extends to nearly four orders of magnitude in intensity. We
note that the exponential decay rate in this regime depends
on the parameters of the fiber, e.g., the slope is steepest for
pp=0.1 and ap=10°. Also the spatial extension of this ex-
ponential regime depends on the fiber. This extension is
longest for pp=0.1 and @p=10° and shortest for pp=0.5 and
ap=90°.

Regime IIT (10<z<25) describes the transition from few
scattering to the diffusive behavior. For the longest distances
we enter the diffusion regime IV (25 <z) that has been most
thoroughly studied in the literature.

In order to obtain a more quantitative understanding of
these four regimes along the optical axis, we will discuss
below some analytical approaches and compare their predic-
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tions systematically with the Monte Carlo (MC) data. Before
we do this, however, it is important to comment on the im-
pact of the measurement process on the light distribution for
the experimental situation discussed in Sec. V where the me-
dium has a fixed length W and the detector is inside the
medium, z<<W. For instance, for small detection distances z
nearly all photons that would otherwise brighten the medium
are absorbed by the fiber. This blocking of the beam could
therefore influence the light distribution in the entire medium
and even modify the light that would be at location z in the
absence of any detection. The effect of the detection fiber can
be modeled by adding a spatially localized component to the
absorption coefficient, allowing for the photons to be fully
absorbed if they pass through the circular surface area of the
detector, centered at location r. However, this approach does
not describe accurately those photons that suffer an unavoid-
able reflection at the surface of the fiber due to an index
mismatch. It also removes those photons from the dynamics
whose incoming angle is larger than the field of view of the
fiber and therefore are not detected.

We define a measurement to be destructive if a photon
that passes through the area of the detector can return to the
detector. This second passage contributes obviously to the
real light distribution at that location but it cannot be mea-
sured if the photon was absorbed during its first passage
through the detection area. In order to determine quantita-
tively the importance of this effect due to the measurement,
we have introduced a parameter =, as a degree of destruc-
tiveness of the measurement. It is natural to define it as the
number of returned passages through the detector opening
relative to the number of photons that pass through it, 2
= (total number of returns)/(number of photons).

In Fig. 2(a) we show the behavior of this parameter = for
two fibers with detection radius pp=5 and pp=10 (and «y
=90°) as a function of the location of the fiber z for two
media of length W=50 and 100. For comparison, in Fig. 2(b)
we show also the number of detected photons among the
total of 10%. For the larger detector area, pp=10, = reaches
its maximum value (here around 10%) in the middle region
of the medium, z=0.5W, meaning that any theory that does
not include the absorptive effect of the measurement would
overestimate the experimental data by 10%.

The small value of E close to z=0, where the light beam
is injected, might seem counterintuitive at first. Even though
this is the region where the fiber absorbs nearly all photons
and therefore blocks the entire beam for the rest of the me-
dium, E~=0 suggests a nondestructive measurement. The
reason for this surprising result is related to the entry surface
at z=0, which is nonreflective as we have assumed an index
matched interface. In order to be detected for a second time,
the photons would have to turn around after their first pas-
sage through the detector area. These reversed photons
would have to pass the z=0 plane first and then turn around
again to be able to reenter the fiber. However, these photons
do not have enough scattering space available; they would
cross the interface at z=0 and therefore can never return to
the fiber. The same mechanism explains also why = reduces
to zero at the other interface at z=W.

Comparing the two values for E for the wide and narrow
detectors, it is clear that the measurement is potentially de-
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FIG. 2. The degree of destructiveness = as a function of the
location of the detector z for a wide and narrow detection with fiber
radii pp=>5 and 10. The parameter = is related to the ratio of the (at
least) doubly to singly detected photons. The bottom graph shows
the number of detected photons as a reference. [N=10% photons,
ap=90°, u,=1, u,=0, g=0.9, W=100, and W=50 (dashed line).]

structive only for large media and significantly large fiber
areas wpDz. This is expected as the return probability for a
photon decreases with decreasing detector area. The other
two curves were obtained for a shorter medium (W=50) and
suggest that the maximum value of = can increase with in-
creasing width W as more photons have the opportunity to
return to z before exiting the medium at W. For an experi-
mental setup (discussed in Sec. V) the degree of destructive-
ness = is a key parameter to determine a sufficiently small
detector area to maximize the agreement with theories that
do not take the removal of the measured photons into ac-
count.

In the next section we will describe various theoretical
attempts to model these individual four regions discussed in
Fig. 1. In Sec. V we will compare the theoretical predictions
with experimental data. In contrast to the comparison with
the Monte Carlo simulation where all parameters can be eas-
ily controlled, in the experimental situation we have control
only over the detection parameters pp and «, requiring a
fitting for the scattering parameters such as u,, g, and u,.

III. FIRST-ORDER SCATTERING THEORY FOR
REGIMES I AND II

In order to have an analytical description for the light
distribution close to the source, let us discuss the prediction
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FIG. 3. Geometry and parameters for the single-scattering
regime.

of a simplified approach in which we assume that only un-
scattered and singly scattered light contributes to the de-
tected signal. We also assume that the laser beam’s initial
divergence is negligible. Neglecting any coherence proper-
ties of the beam there are two regimes of interest depending
on the ratio of the diameters of the detection fiber and the
initial beam.

Let us study the case in which the beam’s initial diameter
is much narrower than that of the detection fiber. The oppo-
site limit can be obtained by integrating the result over vari-
ous “narrow” beams. In Fig. 3 we have sketched the relevant
parameters that can be chosen more generally than discussed
in the previous section. We assume that the light is injected
at location r,= (x,,y,,0) with a velocity parallel to the z axis,
traveling to location r+&, with £€=(0,0,£), before it gets
scattered. The detection fiber is placed at r=(x,y,z), its ra-
dius is pp, its orientation is given by the unit vector np, and
its maximum acceptance angle is «p. The vector R(&,Q)
=(X,Y,Z) denotes the location where the photon with a di-
rection given by the unit vector £ would pass through the
plane spanned by the detector area. In this approach the de-
tected light is proportional to sum of two contributions: The
unscattered light whose probability is denoted by Dy(r) and
the probability due to singly scattered light D;(r).

The probability to detect unscattered light is only nonzero
along the optical axis and it is given by the (infinite) product
of the probabilities not to scatter or absorb within the interval
of length Aé=z/K (where K denotes the number of inter-
vals), leading to IT,[ 1 — (u,+ u,)AE] — exp[—(u,+ p,)z]- As a
result, its contribution to the detected light is

Dy(r) = exp[— p1z]0[pp° = (x = X)* = (y - ¥)*]

X0O(e, - np—cos ap). (3.1)

The Heaviside unit step function © is defined as ©O(x)
= (|x|+x)/(2lx[) and pr= s+ p,.

The total probability to measure singly scattered light is
obtained by summing over all possible optical paths that can
reach the detector area:

o T (2
Dy(r) = f f J d¢ d*Q P(£,9)0(pp - [R -]
0 0 0

XO(LQ - np —cos ap). (3.2)
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Let us discuss the meaning of the three factors in Eq. (3.2)
separately. The first factor P(&,€2) is related to the probabil-
ity density that a photon scatters at location r +§ into the
direction €. It is the product of the probability density not to
scatter (or absorbed) between £€=0 and &, then to scatter at
location r +£ into the € direction and then not to scatter
again as it travels the remaining distance |[R—§&-r,| to the
detector:

P(£,Q) = exp[- MTf]foHG(ez - Q)exp[- ,U«T|R -&- rs|]'
(3.3a)

For the conditional probability density to scatter into the €2
direction we chose again the Henyey-Greenstein phase func-
tion fyg(e,- Q)= (1/4m)(1-g*)(1+g>-2gQ-e,) 2.

The second factor in the integrand of Eq. (3.2) determines
if photons miss or reach the detector area. The particular
location at which the photon crosses the plane spanned by
the detector area can be found from simple geometrical con-
siderations

R(§Q)=r,+&+[np - (r—£-1)/(Q-np)]Q.
(3.3b)

The third factor in Eq. (3.2), the second O function, guar-
antees that the angle of the incoming photon, cos™!(Q-np),
is within the fiber’s acceptance cone. We should mention that
we count here the detected photons with equal weight and do
not include here the precise details of the relationship be-
tween incoming angle and resulting photoelectric current
generated by the detector. We also do not need here a factor
(€ -np) which is required in flux based calculations based on
the irradiance as discussed in Sec. IV [22].

To illustrate the general solution let us examine a special
case of most interest to this work. We choose np=(0,0,1),
r,=(0,0,0) and monitor the detected light along the z axis,
r=(0,0,z). In this case the three factors in the integrand
simplify significantly. The first factor becomes

P(£,Q) =exp[— puré+ (2= §/(cos 9) | pefuc(€2 - e,),
(3.4)

where 9 is the polar angle of €2 with regard to the z axis.
The two unit-step functions reduce the upper integration
limit to 9,,,,(£§) =min{tan™'[pp/(z-€)],ap}. The integrand
does not depend on the azimuthal angle variable and we
obtain

< 19max(g)
D,(z):Zw‘,uA.f dgf sin 9 dO
0 0

Xexpi{— url €+ (z = &/cos (D).

This result is a generalization of the formula obtained in
Refs. [15-20,22]. We should mention that the same result
could be obtained formally from the first-order solution
(in u,) to the Boltzmann equation for the irradiance I(r,€2).
If we integrate this irradiance over the detector area and
those directions that are within the field of view of the
detector, we obtain very quickly the nice integral,
JbP27p dp[§P2 sin O d¥ cos 9 I(r,cos ¥), which due to

(3.5)

PHYSICAL REVIEW E 74, 061909 (2006)

N [in 10"]

4' O Monte Carlo D
1T — 0.1
1 Theory 0.01
o'"2'"'21"'é"'é"d'o'pis'z'

FIG. 4. Comparison of the few scattering theory with MC data
(circles) for regimes I and II for two values of pp=0.01 and 0.1 for
ap=90°. Inset: The dependence of regime I on the detector radius
pp for ap=90° and 1°. Note the linear intensity scale. (N=108
photons, u,=1, u,=0, g=0.9, and W=10.)

the cylindrical symmetry simplifies to the single integral

ap
D,(z) = 27r,u,sf dV cos O exp[— uz {1 — exp[— urM

0

Xtan(¥2) 1} fuc(D/[ ur tan(9/2)], (3.6)

where M =min{pp,z tan(9/2)}. The expressions in Egs.
(3.5) and (3.6) are identical.

Let us first examine the range of validity of this solution.
In Fig. 4 we have graphed the detected light distribution as a
function of z for a medium of width W=10. The circles are
the data of the Monte Carlo simulation and the continuous
lines are the analytical results from Egs. (3.1) and (3.6),
Dy(z)+D,(z). For small values of pp, and «j, the few scatter-
ing theory works very well and predicts correctly the behav-
ior in regime I (enlarged in the inset) and the exponential
decay region II. As pp or ap is increased, more than just
single scattering events are detected leading to a larger inten-
sity than predicted by this theory. It is important to note that
while this particular theory predicts an exponential decay
with the rate w,+u,, the Monte Carlo data suggest that the
actual exponential rate can be much less and depends on the
angle ap, as well as the radius pp.

In the inset we show on a linear scale the intensity decay
for very short distances for three different values of pp.
For small values of ap and pp the detected light is dominated
by unscattered light leading to a nearly immediate exponen-
tial decay, whereas if the detector is either sufficiently wide
or has a sufficiently wide field of view, we note deviations
such as doubly scattered light can also be detected. As sug-
gested above the details of this region also depend on the
anisotropy g.

After this numerical discussion, let us explore the limiting
cases of the expression Eq. (3.6). One could incorrectly ex-
pect that for very short distances the nonscattered light given
by Dy(z)=exp[-usz] dominates, leading to the Beer-
Lambert exponential decay law with decay constant u; and
that only after a characteristic distance deviations from the
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exponential decay due to singly scattered light occur. How-
ever, the first two terms of the Taylor expansion of D(z)
+D(2)=1—pus[1 - g/ p2 [ §Pd 0 sin 9 fyg(9)] z suggest
that, depending on g and the angle «ap, the initial slope can
be significantly smaller than wus. In fact the initial decay of
Dy(z)+D,(z) could be even quadratic, as the linear term in z
can vanish if either g is close to unity or «p, is very large,
leading in both cases to 2[(Pd¥ sin O fug(¥)~1. This
rather sensitive property could be exploited to use the scat-
tering data to reconstruct g from very thin slabs and also to
examine properties of the phase function.

Let us complete this section with two comments about the
range of validity of the few scattering theory. The theory
takes only those photons into account that scatter at most
once before hitting the detector. The theory therefore under-
estimates the signal if doubly and multiply scattered photons
enter the detector as well. We compared the theory with the
Monte Carlo data for various anisotropy parameters g and
found that for g=0 the theory is extremely good and valid for
the largest s-d distances. This makes sense, as for the oppo-
site limit of g close to 1 as well as g close to —1, the multiply
scattered photons stay close to the optical axis and would
unavoidably also pass through the detector, making the
theory invalid. We also found that the decay rate is largest for
fully isotropic scattering (g=0), as multiply scattered pho-
tons can most effectively avoid being detected.

IV. DIFFUSION THEORIES FOR REGIME IV

As the derivation of the results for undirected laser
sources can be found in various publications [13,35,36], we
just sketch here the final expressions for our angularly colli-
mated source. The diffusion approximation depends only on
two parameters to characterize the medium, the diffusion
coefficient, D=[u,+(1-g)u,]"'/3, and the absorption co-
efficient u,. The irradiance is approximated by its two
velocity moments, I(r,Q)=(1/4m7)p(r)+(3/4m)Q-J(r),
where the fluence ¢(r)=[d’Q I(r,Q) and the flux J(r)
= [d’Q Q I(r, Q). The light measured in the opening of the
detection fiber can be obtained via

Dyise(2) = f 2mp dp f dQnp- VI(r,Q),  (4.1)

where the angular integral covers the opening cone of the
fiber with angle «, and the integration over the cylindrical
coordinate p extends from O to the radius of the fiber p,. We
should note that in contrast to the theory from Sec. II, the
diffusion theory predicts the light independent of the mea-
surement and if light passes through the detection area mul-
tiple times, the intensity would be overestimated compared
to the measured one. As we will see below, the regime of
validity of the diffusion theory depends crucially on the size
of pp.

If we use Fick’s law, relating the flux to the fluence via
J(r)==DV ¢(r), we can perform the integral over the angu-
lar cone, [d?Q(np-Q)=msin’ap and [d*Q(ng,-Q)Q,
=27/3(1 —cos® ap), and we are left with the integration over
the surface area of the fiber
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Dyire(z) = § sin® ay f 27p dp p(r)

- (1-cos® ap)l2D f 27p dp dp(r)/dz.

(4.2)

There are two different geometries for which analytical so-
lutions for the fluence can be obtained using the method of
image charges [37]: The slab geometry and (its limiting case)
the semi-infinite medium. The fluence for a slab of width W
is given by

baap(®) = 2 [S1(m) + Sy(m) + S3(m) + S4(m)], (4.3)

m=—s
where the four functions are given by

S1(m) = [1/(4mD)]exp[- k& (p.m.2) V& (p.m,2)~",
(4.4a)

S(m) = = [1/(4mD)Jexp[~ x¢*(p,m,2) V& (p.m.2)™",
(4.4b)

Sy(m) = [3/(4m) ][z + 2m(W + 2z,) lexpl— «& (p,m,z)]
X[k& (pm,2)* + & (p.m,2) 7], (4.4¢)

S4(m) = [3/(4m)][z + 220 + 2m(W + 220) Jexp[— k&*(p,m,z)]
X[ k& (p,m,2) 7 + £ (p,m,z)]. (4.4d)

Here we have used the following abbreviations: «
= [u./D),  E(p.m,2)= [{p*+[z+2m(W+2z0)]*}, and
E(p,m,z)= {p?+[z2+2z0+2m(W+220)]*}. The length z,
=2.1D is related to the location of the first image charge
used to solve the diffusion theory with the approximate
boundary condition ¢g,,(x,y,z=-2.1D)=0 and ¢q,,(x,y,z
=W+2.1D)=0.

The general solution Eq. (4.3) for the fluence for the slab
can be interpreted if we analyze its limiting cases. For ex-
ample, the semi-infinite medium is obtained for W—o and
represented by a comparably easier formula:

¢semi(r) =5 (m = 0) + SZ(m = 0) + S3(m = O) + S4(m = 0) .
(4.5)

The first term is identical to the fluence for an undirected
source in an infinite medium, S;(m=0)= g (r)
=[1/(4mwD)]exp[—«r]/r. The third term, S3(m=0)
=[3/(4m) ]z exp[—«r][k/r*+1/r%] is associated with the
correction due to the directionality of the source. The sum
of the second term, S,(m=0)=d¢(r+2zpe.), and the
fourth term are the fluences due to the image source located
at r=-2ze, reflecting the approximate mathematical bound-
ary condition ¢pi(x,y,z=-2.1D)=0.

Note that if we choose z=W the prediction of the slab
theory would be based on only a single photon passage
through the detector, suggesting that in certain regimes this
model could be reasonable to predict experimental data for a
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semi-infinite system where the perfectly absorbing detector
is inside the medium.

Before we discuss the transition into this diffusive regime,
let us remark that—quite surprisingly at first—for short
source-detector spacings (of the order of 1/u') the predicted
detected light is identical for g, (r) and @gmi(r). This is
true even if z=W and we compare the distribution of a very
thin slab with a semi-infinite medium. In fact, the two theo-
ries differ only for large distances. This unexpected agree-
ment can be understood as follows. The light that misses the
detector area leaves the medium for the slab geometry,
whereas for the semi-infinite medium it could turn around
due to scattering. If this returned light happens to enter the
detector area we would expect a different result between
bgan(r) and @e.mi(r). However, once the light crosses the
(x,y) plane at z, it must turn around by 180° to become
detectable. On average each photon requires a radius of the
inverse transport length 1/u’ in order to turn around. If z
<1/u', however, the photons would exit at the boundary at
z=0 and cannot return to the detector. As a consequence
those photons that could make a difference between the slab
and semi-infinite geometry cannot reach the detector. We
should point out that this finding, however, does not contra-
dict the above statement that ¢ei(r)=limgy_ . Pgap(r). A
similar argument was used in Sec. II to show why E=0
close to the surfaces.

In Fig. 5 we compare the different diffusion theories with
two types of Monte Carlo simulations for various detection
parameters. The continuous lines are the prediction of the
slab theory; the dashed lines correspond to the semi-infinite
medium. The crosses are the Monte Carlo data representing a
real (perfectly) absorbing detector in which only the first
passage through the detection area is counted. The circles
permit multiple passage and therefore permit multiple count-
ing of photons. The latter is associated with an ideal detector
whose presence has no impact on the light distribution. For
large pp(=50), shown on a linear scale in Fig. 5(a), the dif-
ference between both detector readings is significant; for in-
stance, for region z<<10 we find that the number of photons
that pass through the detector exceeds the total number of
injected photons. In this particular case the maximum degree
of destructiveness E exceeded 78% at z=W/2. As mentioned
above, the diffusion theories permit a multiple detection of
the same photon, so the agreement with the corresponding
Monte Carlo data is remarkably good for small s-d spacings,
but bad for the data based on a single passage.

In Fig. 5(b) we show on a logarithmic scale the data for
other detector areas. For p, <10, the MC data for both types
of detectors are nearly identical. We see that, roughly half-
way into the medium, the two diffusion-type theories predict
similar data, whereas for locations z>W/2 the photons that
can exit at z=W lead to a lower number of detectable pho-
tons compared to those of a semi-infinite slab. For smaller
fiber radii pp, however, an agreement with the diffusion
theory would require larger spacings z.

V. COMPARISON WITH EXPERIMENTAL DATA

Let us briefly describe the experimental setup. We have
used two laser systems: A temperature controlled (ILX LDT-
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FIG. 5. Comparison of the slab and semi-infinite diffusion
theory with MC data for absorbing and ideal detectors. The top
figure on a linear scale shows that the diffusion theory can predict
the data of a nonabsorbing detector very well for remarkably short
distances, if the radius of the detection fiber is sufficiently large.
The bottom figure compares the data on a logarithmic scale for
various fiber radii. (N=2.5 X 107 photons, u,=1, u,=0, g=0.9, and
Ww=100.)

5412) diode system (LDX-3525) lasing with about 80 mW at
around 560 nm and a HeNe laser (Spectra-Physics Stabilite
124B) lasing at 30 mW. As the medium, we chose diluted
solutions of nondairy creamer (Concepts), which is basically
corn syrup solids and soybean oil, in water with a concen-
tration of about 0.7778 g/L in our rectangular glass con-
tainer of 20X 20X 50 cm. We believe that the tank is large
enough to neglect boundary effects. The central piece of our
setup is a computer controlled translation stage that permits
us to vary the location of the optical detection fiber inside the
medium with an accuracy of less than 25 um inside an area
of 85X 55 cm. To maximize our photon collection efficiency
while maintaining control over the direction we used an Eska
acrylic optical fiber (Edmonds) with radius of p,=750 um
and a numerical aperture of 0.51, corresponding to a maxi-
mum acceptance angle of a,=22° in water and for compari-
son [38] we also used Silica core multimode fibers (Thorlab)
with diameters of 0.91 mm (BFL 22-910) and 0.6 mm (BFL
37-600). The fiber is connected to a wide area photo receiver
(NewFocus 2031), whose photoelectric output voltage is sent
into an amplifier (SR 250) before it is recorded using Lab-
View, which also controls the two stepper motors for the
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FIG. 6. Experimental data (bars) compared to MC data (line)
(based on 108 photons) using anisotropy g=0.8, u,=0.66 cm™!, and
1#4,=0.01 cm™!. The dotted graph is the few-scattering theory [based
on the analytical solutions of Egs. (3.1) and (3.6)] and the dashed
line is the slab diffusion theory [based on Egs. (4.1)-(4.4)]. The
medium was a water nondairy creamer solution with a concentra-
tion of 777.8 mg/1. The detection fiber had a numerical aperture of
NA=0.51 with pp=750 um. The inset shows the beam profiles for
various distances z. (Top) Dilute medium and (bottom) less dilute
medium.

translation stage. We used several neutral density filters to
attenuate the signal close to the source to obtain the required
dynamic intensity range and rescaled the data accordingly.
In order to obtain the data on axis, we have scanned for a
given location z in the transverse direction to measure the
beam profile as a function of y. A typical example of these
scans is shown in the inset in Fig. 6(a). The He Ne laser
beam has a 1/e>-Gaussian waist of 1.1 mm as we verified in
a separate measurement using a much smaller fiber (with
diameter of 0.125 mm). As the diameter 2pp(=1.5 mm) of
our main detection fiber exceed 1.1 mm, the detected waist is
larger than the true beam width. The shift of the center loca-
tion of the beam with increasing z is associated with a
change of the neutral density filters which slightly redirect
the beam. We note that the decrease in the beam’s signal
strength is more associated with an amplitude attenuation
than a widening of the beam. The beam profiles show that
there are at least two regimes in z; for small spacings the
beam is clearly visible above the background, whereas for
7>20 cm the background exceeds the beam’s strength. This
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value correlates nicely with the extension of the exponential
decay regime II.

The bars in Fig. 6(a) show the maximum value of each
beam profile as a function of the fiber location z. As pre-
dicted in Sec. II, the different regimes are clearly visible. For
comparison, we have also indicated by the continuous curve
the predictions by the Monte Carlo simulation based on N
=108 photons and taking the nonzero initial beam widths into
account. The experimental data (normalized to match the
MC data at z=20 cm) are best matched by u,~0.66 cm™,
1, ~0.01 cm™!, and g=0.8, showing that, at 633 nm, the
nondairy creamer is a highly forward scattering substance
where the scattering strength is at least 50 times that of the
absorption. We found that the MC data for the on-axis signal
strength are quite sensitive to changes in the scattering pa-
rameters g, M, and g, which is promising for more opti-
mized reconstruction schemes which we will discuss else-
where.

For comparison, we have also included the predictions of
the two analytical theories according to Egs. (3.1) and (3.6)
for the few scattering theory and Egs. (4.2)—(4.4) for the
diffusion theory. We note that the two theories were not nor-
malized independently, both are scaled corresponding to the
same source strength. Despite the relatively large value of g,
the few scattering theory is not so bad, whereas the diffusion
theory would describe the signal only for much larger dis-
tances z exceeding the size of our tank.

To make contact with the diffusion regime, we have re-
peated the measurement for a medium in which we have
increased the concentration of the scattering nondairy
creamer. The results are shown in Fig. 6(b). In this case, the
diffusion theory for the slab (u,=1.63 cm™, g,
~0.03 cm™!, and £=0.8) matches the experimental data al-
ready for much shorter distances z=10 cm. This value
agrees again with the distance at which the narrow beam
profile dives into the background value, as shown in the in-
set.

VI. SUMMARY AND OUTLOOK

In this work, we have examined the light distribution for
scattered light along the beam axis and found four character-
istic regimes depending on the source detector spacing. We
simulated the experimental signal using Monte Carlo data
and we tested the accuracy of various approximate but ana-
Iytical theories. We point out that—in addition to the optical
parameters of the medium—also the parameters characteriz-
ing the detection fiber can determine the range of validity of
these theories. As the data were taken along the optical axis
and a nearly complete removal of light from the system is
unavoidable, we had to examine also the impact of the mea-
surement process on the distribution of the light. As analyti-
cal theories are often essential for efficient image inversion
schemes, it is necessary to understand under which condi-
tions the on-axis light measurements are destructive and
limit the validity of approximate analytical approaches that
usually do not take a perfectly absorbing detector into ac-
count. We defined a numerical degree of destructiveness = to
compute a possible error for those theoretical descriptions
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that cannot take the effect of the measurement into account.
These errors can be significant for large fiber openings and
acceptance angles.

In future work, we will continue to explore the nondiffu-
sive regimes I, II, and III with regard to the light distribution
off the optical axis as well as for fiber alignments that are not
parallel to the optical axis as discussed here. Our preliminary
results reported here suggest that the on-axis data in regions
IT and IIT are quite sensitive to the optical scattering param-
eters. We should mention that the spatial extent of all four
regimes depends on the medium characteristics as well as the
detection parameters. We will explore how the nontrivial on-
axis signal discussed here can be used to accurately and sys-
tematically determine the scattering parameters. These stud-
ies will also test the validity of the particular scattering phase
function used in this work [34]. One could also replace the
nondairy creamer scattering medium with a solution of water
with latex microspheres of identical radii with precisely
known optical properties in order to have more accurate
comparisons of the quality of our on-axis method.

A better understanding of regimes II and III would also
open new avenues for improved imaging. In medical endos-
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copy, e.g., a small spacing between the fiber source and de-
tector is unavoidable and diffusion-based theories fail to re-
liably predict the light distributions. In non-diffusive media
such as narrow biotissues, regimes II and III determine tran-
sillumination as well as reflective measurements. The diffu-
sion theory is also known to become less reliable when the
absorption is too large [39], but significant progress in bio-
optical imaging was reported in the past few years [40-46].
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